Model of Organization’s Intellectual Capital Measurement

Lina Uziene

Kaunas University of Technology
K. Donelaicio str. 73, LT-44309, Kaunas, Lithuania
e-mail: lina.uziene@ktu.lt

Intellectual capital theory has been active for two decades already. Despite that many unanswered questions in theory and business practice are still left. Issues of intellectual capital essence, structure, measurement and its impact on business performance are still being researched. Managers constantly look for the new solutions of recognizing, measuring and managing intellectual capital in order to maximise the value of knowledge, develop new forms of competitiveness and increase organization’s potential.

Intellectual capital measurement has been identified as one of the most important issues for today’s business success. Plenty of intellectual capital measurement methods can be found in business literature. New methods appear within the intellectual capital theory continually. Some of them are implemented in business practice, others remain as theoretical suggestions important for further subject research. But despite that, a common view on intellectual capital measurement still does not exist.

Results of the comparative analysis of intellectual capital measurement methods are discussed and the main bottlenecks of intellectual capital measurement methodology are revealed in this paper. Based on these results the model of organization’s intellectual capital measurement is proposed here.

Intellectual capital measurement is specified as a multi-stage process of information accumulation and interpretation within the model proposed. Six stages of intellectual capital measurement process are formalized. The process starts with the situation analysis in which measurement problem reveals and the particular measurement target development. It continues with measurement possibilities assessment, measurement method selection and organization of its implementation. The process results in the decision making stage. Two alternative scenarios of the rational intellectual capital measurement process are briefly discussed in this paper and the particular measurement techniques are proposed for each scenario.

The model proposed summarizes knowledge of intellectual capital measurement. It intends to help managers understand intellectual capital measurement process as a whole and implement intellectual capital measurement solutions purposefully and in series.

Keywords: intellectual capital, intellectual capital measurement, measurement process, model.

Introduction

Intellectual capital (further IC) measurement issues are discussed within the research of almost all IC theory gurus (Sveiby, 1997; Sullivan, et al., 2000; Joia, 2000; M’Pherson, 2001; Guthrie, 2001; Stewart, 2001; Bontis, 2002; Lev, Daum, 2004; Edvinsson, et. al., 2005; Pike, Fernstrom & Roos, G., 2005; Andriessen, 2005, Andriessen, 2004, etc.). Most of them offer their own IC measurement methods. Lithuanian studies approve the relevance of IC measurement (Mikulieniene, Jucevicius, 2000; Legenzova, Seetko, 2001; Anskaitis, et al., 2006, Vaskeliene, 2008; Uziene, 2009; Valanciene, Gintzuaskiene, 2009; Strumickas, et al., 2009), but mostly explore issues of its essence, structure and reporting or cover organization’s performance measurement issues in a broader sense. Today we have lots of different models and frameworks, but IC measurement method established and universally accepted in business practice still does not exist. Comparative analysis of different IC measurement methods is quite rare in theory. Bontis (2001) and Andriessen (2004) are known for their strong contribution to this field. But the question, what complicates the development of IC measurement methodology, has not been clearly answered yet.

What complicates the discovery of universally accepted IC measurement method? What factors should be taken into account when determining the target of IC measurement and selecting measurement techniques? How should a process of IC measurement look like from the ideological point of view? The answers certainly lie in the deep comparative analysis of different IC measurement methods, identification of the bottlenecks of methodology and the design of new solutions.

The following question outlines the key problem of this paper: how should organization’s IC be measured in order to make management decisions as well as to disclose information for external stakeholders? This paper is intended to consolidate knowledge of previous research and propose a conceptual model based on it. The model proposed should refer to the bottlenecks of IC measurement methodology. It should provide guidelines for the implementation of the reasoned IC measurement process and selection of appropriate measurement techniques.

The subject of this research is intellectual capital measurement.

The main objective of this research is to propose the conceptual model, which would formalize the process of organization’s intellectual capital measurement in the context of the satisfaction of internal and external stakeholder information needs.
The methods of this research: Constructivism as a prevailing epistemological approach has been selected for this research. The early stage of IC measurement methodology development and the impossibility of using quantitative methods complicate the application of positivism. Theoretical findings of this paper are based on the scientific research of Lithuanian and foreign papers. Comparative analysis, synthesis and modelling methods are used when designing the model. Case study method is applied when testing the model in a particular knowledge organization.

Diversity of methods

Dozens of IC measurement methods can be found in IC literature today. Most of them differ in their IC perception, measurement techniques and other features. Method established and universally accepted in business practice still does not exist. Several stages of the development of IC measurement methods could be highlighted here. The first one is related with the appearance of the former solutions of IC measurement and management (Navigator (Skandia, 1995), Intangible Asset Monitor (Sveiby, 1997), etc.). Such methods were designed as a set of different IC-related indicators and intended to capture intangibles organizations have. The search for critical IC indicators is still relevant in theory as well as in practice. The second stage methods (Holistic Value Approach (Pike, Roos, 2000), Inclusive Value Methodology (M'Pherson, Pike, 2001), etc.) are intended not only to capture IC, but to follow transformations of it from one form to another as well. The main purpose of these methods was to establish the links between different kinds of IC as well as to assess the impact of changing IC performance on business results. The third stage is known for its efforts to develop a single IC indicator (IC-Index (Roos et al, 1997), IC-Rating (Joia, 2000), etc.) standardized and easy to use. Unfortunately, such indicators were rejected in practice as uninformative and useless in management process. And the final stage, which is known for it’s regard to the strategic management. Such methods (Intellectual Capital Statement (Mouritsen, 2001), Balanced Scorecard (Kaplan, Norton, 2004), etc.) are intended to capture the impact of management decisions on business performance.

In order to find out the prevailing methodological features among the IC measurement methods, the comparative analysis of thirty different methods was performed by the author previously (Vaskeliene, 2006, 2007). According to the results different IC measurement methods are based on different management paradigms, and differ in their theoretical background, methodological approach, number and type of indicators used, benchmarks applied, techniques implemented and other features.

When performing comparative analysis different methodological features were distinguished as important and explored (derivation paradigm; conception; empirical evidence; problem solved; methodological reasoning; causal direction; coverage; time scale; number of indicators; internal-external measurement indications; benchmarks; dominant measurement approach; competitive comparability; restrictions of use; advantages; disadvantages; practical applicability; etc.).

It emerged that majority of the IC measurement methods were created during the last decade and the development of these methods was influenced by the IC theory mostly. Despite the variety of definitions and descriptions used, the most popular concept among the methods is “Intellectual Capital”. Nearly half of the methods are designed in the outcome-reason direction. The rest are based on the analysis of the reasons for present IC performance as well as the forecast of its future performance. From the coverage point of view IC within the methods is mostly treated as an entity of undisclosed organizational potential that influence business performance. An obvious interdependence between the derivation paradigm of the methods and their positioning on a time scale has been revealed. Methods developed within the finance theory are mostly based on retrospective information, while the IC theory methods are oriented towards the measurement of organizational potential far more. Methods developed within the finance theory involve monetary measures. Measurement results of these methods are based on a single indicator mostly. While the IC theory methods are distinguished for the variety of measures used and their measurement results are presented as a single indicator the same as a set of indicators. An obvious interrelationship between the problem solved within the methods and benchmarks used exists. Benchmarks are more common within the internal measurement methods. While competitive comparability is more relevant within the external reporting. Investigation of the measurement approach applied reveals that the state measurement and the flow measurement are equally important. Many methods during the research were rejected because of various restrictions related to particular circumstances of implementation, such as total reliance on the type of industry or special business environment. Just a few methods are common within business practice. Others are not clearly reasoned, lack functional and technical clarity and are solely based on theoretical assumptions.

Advantages and disadvantages are observed among the qualitative and quantitative, financial and non-financial, single and multi-indicator, benchmark included or non-included methods. But one of the most important issues observed during the development of IC measurement methods is a particular problem solved with the help of the method. Based on this point of view all methods can be grouped into two groups:

- IC measurement methods designed for internal management purpose;
- IC measurement methods designed for external reporting purpose.

These two groups of methods apparently differ in their nature, prevailing measurement techniques and methodological features. The polarity of different methodological features among the IC measurement methods within these groups was detected. This evidently prompts the divergence of two separate directions within the IC measurement methodology.

Bottlenecks of methodology

Some systematic shortcomings are not avoided in the development of IC measurement methodology (Vaskeliene,
First of all, methods are often designed without paying regard to measurement context. This guides to the inert operation of traditional measurement techniques and the absent of clear requirements for measurement process. In order to get useful measurement results, an expediency of IC measurement process must be perceived. Problem solved with the help of the method must be realized and a particular stakeholder and his needs must be identified. It is necessary to realize what is the background of the demand of IC measurement, what environment this demand comes from, who is going to use a particular method, what results and in what way are going to be used.

Overvalue of the role of a customer (as a stakeholder) is observed within some methods. Treating customer as a single income source in the value creation process distorts conception of the coherence of interests among different stakeholders. This leads to the application of traditional financial techniques, cost-income approach most often, and limits IC disclosure to scarce non-verifiable information. From the value creation point of view organization’s relationship with other stakeholders must be treated as much important as relationship with customers. IC performance should be assessed not only from the financial point of view, but in a broader sense, for example, taking into account aspects of social responsibility, networking or sustainable development. Monetary measures are solely based on retrospective information and do not meet the nature of intangibles. Giving financial measurement relatively bigger prominence than other techniques is incorrect.

Another shortcoming of the IC measurement methodology is an ambition to standardize measurement technique trying “to squeeze” all organizations under the unified measurement framework or the unified set of indicators. In this way organization loses the ability to reveal its unique competitive advantage, which is crucial in knowledge economy. Attempts to measure organization’s IC using a single indicator are not appropriate as well. Disregard to the dependence of IC measurement on the uniqueness of organizational strategy along with a wide range of IC forms complicate the development and interpretation of a single indicator, and therefore should be treated as irrational.

Strategic reasoning is one of the crucial methodological features when measuring IC both for internal management purpose and for external reporting. Disregard to this issue impedes perception of measurement results. As far as IC is not equal to intangibles (capital is commonly defined as a part of the assets, which participate in value creation process) and comes out of the unique strategy of the organization, strategic background should be taken into account when measuring IC. Of course, this complicates the comparability of measurement results among organizations, but increases validity and reliance on measurement results, used for management and investment decisions. Benchmarks solve the problem partially by adding colours to measurement results and opening space for interpretation. Benchmarks provide managers with the ability to monitor implementation of strategy, while investors are provided with the ability to assess quality of management or compare performance of different organizations.

From the measurement approach point of view, both the state measurement and the flow measurement are considered as necessary. Methods based solely on the state approach do not provide full view on IC performance. Transformations from one IC form to another as well as their impact on financial results are important not only for managers, but for external stakeholders as well, for example, investors. Flow measurement opens the door to forecasts and hypothesizing. Therefore, consideration of the combination of both the state measurement and the flow measurement should be considered when designing IC measurement solutions.

And eventually issues related to the implementation of measurement process are often ignored within the IC measurement methods. Methods are designed without consideration of their practical implementation and anticipation of final results often. Some of them are too complicated to adapt in practice, have methodologically unreasoned procedures or worthless results. Disregard to measurement circumstances as well as the absence of the clear methodological reasoning of measurement process leads to the expensive and overcomplicated measurement procedures and therefore to the unpopularity within business practice.

The key bottlenecks of IC measurement methodology development along with the recommendations for how to escape them while developing new solutions are summarized in Table 1.

<table>
<thead>
<tr>
<th>IC measurement bottlenecks and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottlenecks</td>
</tr>
<tr>
<td>Unspecified measurement problem. Why is it necessary to measure?</td>
</tr>
<tr>
<td>Unspecified IC measurement target. What is a target of measurement process?</td>
</tr>
<tr>
<td>Disregard to measurement circumstances. What are the circumstances of measurement?</td>
</tr>
<tr>
<td>Abundance of techniques. What particular technique should be used? What should determine the selection of techniques?</td>
</tr>
<tr>
<td>Methodologically unreasoned measurement process. How should measurement process be organized?</td>
</tr>
<tr>
<td>Unpredicted appliance of measurement results. What decisions it will be possible to make based on measurement results?</td>
</tr>
</tbody>
</table>

Structure of the model

Models and frameworks proposed as a result of the most recent theoretical and empirical research (Smaliukiene, 2007; Juucevicien, et al., 2007; Urbanskiene, et al., 2008; Staskeviciute et al., 2008; Dikiene, et al., 2008; Klimov, et al., 2008; Schieg, 2009; Gatautis, et al., 2009; Kaklauskas, et al., 2009), help authors to reveal their position on different unsettled management issues. In order to organize any conceptual model, sequence of the...
common management problem solving process, which starts with an environment analysis and terminates in a result interpretation, can be applied.

Accordingly the development of IC measurement model should also be based on the clear problem definition. Problem defines determines selection of a proper measurement technique, which in turn influence measurement process and corresponding decision-making. Stages of the IC measurement process are shown in Figure 1.

Figure 1. Structure of the IC measurement model

The model consists of six leading stages that enable systematic (realizing organization as a subsystem of an undivided external business environment, and the IC measurement as a parallel process within already functioning internal system) and purposeful (planning the results of measurement process) IC measurement process. Systematic outlook makes it possible to realize background of the problem solved with the help of measurement, to choose appropriate IC measurement techniques as well as to establish reasoned measurement process.

The six-stage IC measurement process eliminates the bottlenecks of IC measurement methodology mentioned above and provides guidelines for the rational IC measurement process.

Situation analysis in which measurement problem is revealed is the base for IC measurement. In this process stage two directions of internal and external environment analysis are separated and later integrated. Situation analysis reveals the demand of IC measurement and provides a systematic view on different internal and external success factors. The change vector “present–requested situation” helps to identify a particular IC measurement problem. It confirms or denies a need for IC measurement. Otherwise considered problem becomes a target of the other management fields (knowledge management, finance, efficiency control, etc.) in the organization. The “present-requested situation” gap found determines corresponding target development.

\[
(V^{(t)} \cap V^{(r)}) \Rightarrow t_k
\]

where:
- \(V^{(t)}\) – the set of external factors;
- \(V^{(r)}\) – the set of internal factors;
- \(t_k\) – k- particular IC measurement target;
- \(\Rightarrow\) - implication; \(\cap\) - conjunction.

After the situation is analysed and the change vector is determined, IC measurement target is developed. For the measurement process to be reasoned and meaningful it must be target oriented and this target should match the situation directly.

In this stage two basic IC measurement directions are revealed: measurement for the internal and external purposes. Trying to satisfy both of them leads to satisfying neither of them. The change vector “present–requested situation” determines a particular target \(t_k\) development, which in turn influences the choice of measurement method \(m_i\).

\[
t_k \Rightarrow m_i, \quad m_i \subseteq M
\]

where:
- \(m_i\) – 1 – particular IC measurement method (technique);
- \(M\) – set of IC measurement methods.

The third model stage is intended to assess IC measurement possibilities, that are determined by the change vector identified, measurement target developed and organization’s capability found. Measurement target dictates measurement extent, time input, the finance and other requirements. From the other side these requirements are restricted by organization’s capability: size, personnel busyness, scarce financial resource, degree of concentration on the main projects and activities, etc. The balance should be found between measurement requirements \(G^{(r)} = \{g^{(r)}\}\) and restrictions \(G^{(s)} = \{g^{(s)}\}\), which must ensure that measurement target is reached with the optimal (minimal) inputs of time, finance and other resource. The interaction between requirements and restrictions is expressed under the equalization principle:

\[
G^{(r)} \equiv G^{(s)}
\]

\[
(G^{(r)} \cap G^{(s)}) \Rightarrow g_s,
\]

where:
- \(G^{(r)}\) – set of requirements;
- \(G^{(s)}\) – set of restrictions;
- \(g_s\) – s- particular possibilities combination;
- \(\equiv\) - equalization ratio.
The “price–benefit” balance setting in this stage is quite complicated and is often based on the subjective, intuitive attitude of managers.

Fundamental decision concerning the suitability of particular IC measurement method (technique) is made in the fourth model stage. Suitability of measurement technique is determined by the results of previous stages.

\[
m_v = f(V^{(d)}, V^{(p)}; t_v, g_v)
\]

There are two possibilities for managers here. The standard IC measurement method could be implemented or the unique measurement solution developed. In previous research (Bontis, 2001, Andriessen, 2004, Vaskeliene, 2006) IC measurement methods are classified according to two model scenarios. Their advantages and disadvantages are highlighted and application opportunities revealed. Research results and practical experience enable managers to decide about the applicability of methods in the particular management situations. If a suitable method does not exist (unfortunately it is a common situation in current theory’s development period), the unique IC measurement solution should be designed and implemented. The guidelines for its design are proposed further. In the second section of paper the suggestion of rational measurement principles as well as the offer of appropriate measurement techniques will be discussed.

In the fifth model stage the process of IC measurement is organized in practice. This is an integrated process influenced by the internal and external organizational factors, measurement targets and selected measurement techniques. The process depends on the following answers to the questions like “is process terminative or permanent?”, “how long does the process last?”, “how many hierarchical levels of personnel participate in it?”, “is process organized in the “top-down” or “down-top” direction?”. Feedback plays an important role within the IC measurement because it enables organizational learning and process quality improvement.

And finally in the last model stage the results of IC measurement are summarized and alternative decisions are made. A set of decisions \(S = \{v_1\} \) varies from strategic management to the particular intangible resource or functional process management issues. The deeper IC measurement penetrates into organization’s business philosophy, the more opportunities it offers.

Alternative scenarios

From the functional point of view IC measurement is intended to satisfy information needs of internal and external stakeholders that are quite different in their nature. IC measurement for the internal management purpose must perform the role of managerial leverage, reveal problematic areas for decision-making as well as motivate for improvement. IC measurement for the external reporting must disclosure the real state of the resource organizations have and provide clear, relevant and reliable data for different external stakeholders.

Consequently two alternative scenarios should be explored within the IC measurement model. The main differences between them are distinguished in Table 2. Special attention should be paid to the fourth and the fifth model stages, where the design and implementation of organization’s unique IC measurement solution along with the use of standard measurement methods are considered.

Table 2

<table>
<thead>
<tr>
<th>Model stage</th>
<th>IC measurement for internal management purpose</th>
<th>IC measurement for external reporting purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Situation analysis</td>
<td>Effectiveness of intangible resource and value creation process are analysed. External environment is examined as much as it is important for identification and management of organization’s success factors.</td>
<td>Traditions of information disclosure and the best practice cases play an important role. The detailed analysis of stakeholder needs is performed. Organization’s competitive advantages are analysed.</td>
</tr>
<tr>
<td>Target development</td>
<td>IC measurement targets concerning the strategic and operational management are developed. Striving to satisfy requirements of strategic management and security of the effectiveness of particular intangible resource are primary.</td>
<td>IC measurement targets concerning the external information disclosure are developed. Striving to satisfy the needs of one or several stakeholders is primary.</td>
</tr>
<tr>
<td>Measurement possibility assessment</td>
<td>The benefit of IC measurement for organization is emphasized.</td>
<td>The balance between information disclosure price and stakeholders needs satisfaction is weighted.</td>
</tr>
<tr>
<td>Measurement method selection</td>
<td>Methods that satisfy measurement targets the best are selected. Priority is given to the measurement of particular IC sorts.</td>
<td>Priority is given to the diversity of IC sorts (human, relationship and structural) and to the use of standardized methods,</td>
</tr>
<tr>
<td>Measurement process organization</td>
<td>Measurement process is permanent. Importance of feedback is emphasized.</td>
<td>Measurement process is terminative. The result of measurement process is the IC information disclosure (report).</td>
</tr>
<tr>
<td>Decision making</td>
<td>Direct and indirect IC management decisions are made. Their effect is monitored.</td>
<td>Alternative decisions related to information disclosure are made.</td>
</tr>
</tbody>
</table>

Based on the bottlenecks of IC measurement methodology, the rational measurement principles and corresponding measurement techniques are proposed further.

IC measurement for internal management purpose

Research of the methodological features recommended within this scenario (Vaskeliene, 2006) shows that the most reasonable, uncovering maximum information, revealing organization’s potential and easily applicable in practice are measurement methods designed as the set of indicators. Indicators based on organization’s strategy along with the benchmarks reflecting organization’s progress should be employed here. Indicators should be selected intentionally and should match organization’s strategic objectives and value creation process. Benchmarks should reflect organization’s progress in reaching the objectives and implementing the strategy.

Rational process of IC measurement for internal management purpose should:
- enable purposeful IC management and development;
- be based on organization’s policy, strategy and objectives;
- be flexible and respond to external and internal environment changes;
- be clear, methodologically reasoned and easily implemented in different types of organization;
- help to identify management priorities in all functional levels and activities;
- reveal IC management shortcomings and enable to eliminate them;
- stimulate constant management improvement with the help of feedback.

Measurement techniques proposed for the rational process implementation are:

- value chain designing;
- success factors identification and corresponding indicators selection;
- causal interrelationship testing.

These techniques enable systematic and purposeful measurement process, help to identify and implement management priorities and respond to the internal and external changes of business environment.

IC measurement for external reporting purpose

Research of the methodological features recommended within this scenario revealed a set of requirements for the rational process of IC information disclosure. IC measurement methods designed on the basis of the **set of indicators** meet these requirements the best. Measures should be selected according to the clearly considered format and be based on the unified way of their selection, illustration and interpretation. In the databases accumulation process unique information not necessarily needed for the other functional processes should be invoked.

Rational process of IC measurement for external information reporting purpose should be based on further principles:

- reported information should be presented in a clear, consequent and understandable format;
- reported information should be reliable, comparable (from the dynamic point of view and among competitors) and should not raise any interpretation doubts for external stakeholders;
- reported information should indicate present situation and perspectives of organization’s IC state and it’s management efficiency;
- reported information should satisfy stakeholder needs at the maximum level, while the measurement process should empower organization to work towards this;
- measurement process should motivate organization to improve among competitors and work towards reaching the objectives;
- measurement process should be based on organization’s experience and existing data, while the formation of a new database should be based on the “benefit-costs” analysis.

Measurement techniques proposed for the rational process implementation are:

- essay disclosure;
- core competencies identification and corresponding indicators selection;
- different illustration-interpretation means implementation.

Set of indicators along with the essay and different techniques of illustration enable managers to disclose the present and the future performance of IC. Combination of these techniques enables to present information in a clear and reliable way, to disclose the quality of management and stimulate managers to improve.

The prior recommendations are based not only on the comparative analysis of different IC measurement methods, but on empirical research as well. Case study method was selected for the empirical exploration of the model proposed. Observations, in-deep interviews, investigation of original documents and similar techniques were used while carrying out the exploration. Two different enterprise levels within the case organization (foreign capital company operating in Lithuanian IT service market) were explored. IC measurement issues related to the internal management were investigated at divisional level, while issues related to the external IC reporting were explored at enterprise level.

A set of indicators along with the benchmarks is used in order to measure and monitor IC performance at divisional level. Orientation towards essential IC factors helps managers concentrate attention on the essence of value creation and strategic goals. Public IC reports are prepared and published at enterprise level annually. Department of external communication is responsible for this. With the help of annual IC reports managers attempt to provide external stakeholders with the true and accurate information on IC. Different indicators (mostly quantitative), texts and illustrative figures are used when preparing IC reports at a case organization.

Case study research revealed that measurement techniques recommended above were applicable in business practice. The case organization using these techniques makes obvious progress in IC measurement and gets real advantage of its management.

Principle of the random case selection was ignored during the research. It was quite hard to find the case organization, which makes progress in IC measurement, because there are few such organizations in Lithuania. However, case study research is the preferable one while investigating IC measurement issues in this stage of the development of the IC theory, even if it faces some environmental pitfalls.

Conclusions

- There are lots of IC measurement methods proposed within the IC theory. Different IC measurement methods are based on different management paradigms; differ in their IC conceptions, theoretical background, number and type of indicators used, benchmarks applied, techniques implemented and other methodological features. The method established and universally accepted in business practice does not exist.
- The biggest bottlenecks of the IC measurement methodology are disregard to measurement context, distortion of the coherence of interests among different stakeholders, prominence of the financial techniques among others, ambition to standardize measurement technique or to establish a single standardized
indicator, lack of strategic reasoning, absence of benchmarks as well as disregard to the issues related to the possibilities and practical implementation of measurement technique.

Organization’s IC measurement is a multi-stage process of information consolidation and interpretation that should be implemented in the following steps:

1. Situation analysis (IC measurement demand comes from the change of organization’s internal and external environment).
2. Target development (IC measurement target should correspond to the specifics of problematic situation, be concrete and clearly defined).
3. Measurement possibilities assessment (IC measurement possibilities are assessed under the interface between measurement requirements and restrictions).
4. Measurement method selection (standard measurement methods are selected or unique IC measurement solutions are a designed subject to the measurement situation, targets and possibilities).
5. Measurement process organization (measurement process success depends on the knowledge and interest of process participants, flow of the parallel organizational processes, culture, value system and other internal factors).

6. Decision-making (IC measurement results are summarized and alternative decisions are made).

One of the two alternative scenarios (IC measurement for internal management or IC measurement for external reporting) should be accepted when measuring IC. A set of indicators based on organization’s strategy along with the benchmarks could be employed when measuring IC for the internal management purpose. Value chain design, success factors and observation of causal interrelationships among them could be used here as stimulating constant improvement, disclosing IC weaknesses, helpful for management priorities achievement, flexible in front of internal and external environmental changes and simple to implement. When measuring IC for the external reporting, the core competence theory along with the set of indicators, essay and different illustration-interpretation techniques could be used. Such reporting format enables managers to disclose information on IC in a comparable, reliable and understandable way, reveals organization’s ability to perform in the future and ensures its democracy by involving external stakeholders into the management processes.

References

Organizacijos intelektinio kapitalo vertinimas kaip vadybos mokslinių tyrimų problema tyrinėjama jau daugiau kaip du dešimtmečiaus. Intelektinio kapitalo vertinimo metodika vis dar nėra nusistovėjusi. Mokslinėje literatūroje sutinkama daug bandymų analizuoti intelektinio kapitalo vertinimo metodų esmę, kritinių šių metodų vertinimą, bandymų įžvelgti silpnesnius ir stipresnius puses. Šiandien yra daugybė metodų ir modelių, kurios siekia pritaikyti intelektinio kapitalo vertinimą įvairioms poreikims.

Svarbu minimi daugybė nuostatų ir patirties apie intelektinio kapitalo vertinimą, tačiau mažai tai yra pagrindinės šių metų diskusijos. Šiame straipsnyje sprendžiama problema atlikti išvados ir apibūdinti patyrinį, tai reiškia, kad organizacijos intelektinio kapitalo vertinimas tarnauja kaip vienas iš organizacijų strategijų, siekiant pagerinti organizacijos veikimą.}

Tyrimo objektas – intelektinio kapitalo vertinimas.
Tyrimo tikslas – sudaryti konceptualų organizacijos intelektinio kapitalo vertinimo modelį, formalizuojant intelektinio kapitalo vertinimo procesą tenkinant vidinių ir išorinių suinteresuotų dalyvių informacinius poreikius.

Intelektinio kapitalo vertinimo metodų gausa ir aiškių koncepcinių metodikos pėdėtojų kryčių nebuvo atliekama išėkšt išbuвų, kaip apibendrinti metodikos pėdėtо. Todėl straipsnis pradėdamо intelektinio kapitalo vertinimo metodų įvairiavęs aprašymui ir palyginamosių metodų analizės, atliktos ankstesnėse autorese tviruneose, rezultatų apibendrinimo. Palyginti antrąjį tyrimą svarbi kaip intelektinio kapitalo vertinimo metodikos agregavimo, sintetinio ir pažangiių daiktų atrankos priemonė.

Išanalizuojus trisdešimt literatūroje pateikinių intelektinio kapitalo vertinimo metodų, nustatyta, jog šie metodai formuojasi skirtinęvybos paradigmų kontekste, tarpusavieji skirsia intelektinio kapitalo ir vertės kategorijų samprata, indikatorių skaičiaus, matavimo vienetų, išverčių naudojimo pabūdžių, pozicijonavimą laiko atžyvę, vyravučių ir kito būdo naudą. Tačiau vienas iš svarbiausių požymių, leminiacių intelektinio kapitalo vertinimo metodikų formavimąs ir jos specifiką, yra taikant metodą spręsti problema. Šiuo pozicijai visus metodus tikslingai suskirstyti į dvie grupes: 1)intelektinio kapitalo vertinimo metodai, kuriais siekiamos priimti organizacijos valdymo sprendimus; 2)intelektinio kapitalo vertinimo metodai, kuriais siekiamas atskleisti informaciją apie intelektinį kapitalą šiurianims suinteresuotiesiems dalyviams. Toliau straipsnyje apibendrinamos svarbios intelektinio kapitalo vertinimo metodikos formavimosi vietos ir išryškinamos pažangios žingsnės jų įplėtės kryptys. Prieinama prie išvados, jog pagrindinių intelektinio kapitalo vertinimo metodų atitinkamai atplėtės ir aiškiai nustatytos šios metodų tolesnis ir vizualūs įtvirtinimai.

Intelektinio kapitalo vertinimo procesas, kuris svarbu esant organizacijos strategijos formavimo tikslams ir naudojant informacijos atskleidimo tikslais. Empiriškai aprobuotas taikant atvejo analizęs metodą pasirinktore žmų organizacijose.

Kiekvienam iš scenarijų svarbu svarbu esant organizacijos strategijos formavimo tikslams ir naudojant informacijos atskleidimo tikslais. Empiriškai aprobuotas taikant atvejo analizęs metodą pasirinktore žmų organizacijose.

1)intelektinio kapitalo vertinimo metodai, kuriais siekiamos suinteresuotiesiems dalyviams suinteresuotiesiems dalyviams. Toliau straipsnyje apibendrinamos svarbios intelektinio kapitalo vertinimo metodikos formavimosi vietos ir išryškinamos pažangios žingsnės jų įplėtės kryptys. Prieinama prie išvados, jog pagrindinių intelektinio kapitalo vertinimo metodų atitinkamai atplėtės ir aiškiai nustatytos šios metodų tolesnis ir vizualūs įtvirtinimai.

Kiekvienam iš scenarijų svarbu svarbu esant organizacijos strategijos formavimo tikslams ir naudojant informacijos atskleidimo tikslais. Empiriškai aprobuotas taikant atvejo analizęs metodą pasirinktore žmų organizacijose.

Sudarant modelį atliko išvados, jog pagrindinės intelektinio kapitalo vertinimo metodikos kliūtis išsivadins intelektinį kapitalo vertinimo konteksto ir organizacijos strategijos formavimo tikslams, organizacijų esminių informacijos poreikiai. Tačiau, apibendrinant metodų atitikimą suorganizacijų, straipsnyje nustatyta, jog pagrindinės intelektinio kapitalo vertinimo metodikos kliūtis yra formavimo tikslams, organizacijų esminių informacijos poreikiai. Tačiau, apibendrinant metodų atitikimą suorganizacijų, straipsnyje nustatyta, jog pagrindinės intelektinio kapitalo vertinimo metodikos kliūtis yra formavimo tikslams, organizacijų esminių informacijos poreikiai. Tačiau, apibendrinant metodų atitikimą suorganizacijų, straipsnyje nustatyta, jog pagrindinės intelektinio kapitalo vertinimo metodikos kliūtis yra formavimo tikslams, organizacijų esminių informacijos poreikiai.